
A Simple Quantum Linear System Solver and (Tunable) VTAA
Gengzhi Yang

November 6, 2024

Contents
1 Quantum Linear System Solver Based on QSVT 1

1.1 Previous Results . 1
1.2 Optimal Scaling with Block Preconditioning . 2

2 (Tunable) Variable Time Amplitude Amplification 3
2.1 VTAA . 4
2.2 Tunable VTAA . 7
Recently, the paper [LS24] introduces a new quantum linear system solver algorithm that achieves

the optimal query complexity on the state preparation oracles while keep a near-optimal scling in terms
of the block-encoding of the input matrix. A main technique used there is the (Tunable) Variable
Time Amplitude Amplification, which was originally introduced in [Amb12]. Here in this note, I try
to reproduce part of their results.

1 Quantum Linear System Solver Based on QSVT
1.1 Previous Results
First of all, let us recall the quantum linear system solver introduced by QSVT [Gil+19].

Theorem 1 ([Gil+19], Corollary 69). Let ϵ, δ ∈ (0, 12], then there is an odd polynomial P ∈ R[x] of
degree O(1δ log(1/ϵ)) that is ϵ-approximating f(x) = 3

4
δ
x on the domain I = [−1, 1]\[−δ, δ], moreover

it is bounded 1 in absolute value.

So consider a linear system problem as follows:

Ax = b, (1)

if we can access A by accessing OA and O†
A, where they are (αA, a, 0)-block-encodings that block-

encode A and A†, consider the polynomial p(x) defined in Theorem 1, we can implement the x →
3
4
1/κ
x transformation of the singular values of A†/αA with an ϵ accuracy, using O(κ log(1/ϵ)) queries

to OA and O†
A. Note that after the transformation what we have is a (43∥A

−1∥, a+1, 43∥A
−1∥ϵ)-block-

encoding of A−1. Denote this block-encoding as OA−1 , where

(⟨0a+1| ⊗ I)OA−1(|0a+1⟩ ⊗ I) =
1

4
3∥A−1∥

A−1 + Λ, (2)

and ∥Λ∥ ≤ ϵ. Suppose the oracle Ob prepares |b⟩,

OA−1(|0a+1⟩ ⊗Ob |0⟩) = |0a+1⟩ (1
4
3∥A−1∥

A−1 + Λ) |b⟩+ |⊥⟩ . (3)

1

So in order to achieve an error of η, namely∥∥∥∥∥ (1
4
3∥A−1∥A

−1 + Λ) |b⟩

∥(1
4
3∥A−1∥A

−1 + Λ) |b⟩ ∥
− A−1 |b⟩

∥A−1 |b⟩ ∥

∥∥∥∥∥ ≤ η, (4)

i.e. ∥∥∥∥ (A−1 + 4
3∥A

−1∥Λ) |b⟩
∥(A−1 + 4

3∥A−1∥Λ) |b⟩ ∥
− A−1 |b⟩

∥A−1 |b⟩ ∥

∥∥∥∥ ≤ η, (5)

∥∥∥∥ (A−1 + 4
3∥A

−1∥Λ) |b⟩
∥(A−1 + 4

3∥A−1∥Λ) |b⟩ ∥
−

(A−1 + 4
3∥A

−1∥Λ) |b⟩
∥A−1 |b⟩ ∥

+
(A−1 + 4

3∥A
−1∥Λ) |b⟩

∥A−1 |b⟩ ∥
− A−1 |b⟩

∥A−1 |b⟩ ∥

∥∥∥∥ ≤ η. (6)

Consider ∥∥∥∥ (A−1 + 4
3∥A

−1∥Λ) |b⟩
∥(A−1 + 4

3∥A−1∥Λ) |b⟩ ∥
−

(A−1 + 4
3∥A

−1∥Λ) |b⟩
∥A−1 |b⟩ ∥

∥∥∥∥
≤ ∥(A−1 +

4

3
∥A−1∥Λ) |b⟩ ∥

4
3∥A

−1∥ϵ
∥A−1 |b⟩ ∥2

≤ 8∥A−1∥ϵ
3∥A−1 |b⟩ ∥

,

(7)

the last inequality holds given 4
3∥A

−1∥ϵ ≤ ∥A−1 |b⟩ ∥.
For the remaining part,∥∥∥∥ (A−1 + 4

3∥A
−1∥Λ) |b⟩

∥A−1 |b⟩ ∥
− A−1 |b⟩

∥A−1 |b⟩ ∥

∥∥∥∥ ≤ 4∥A−1∥ϵ
3∥A−1 |b⟩ ∥

. (8)

So taking ϵ = O(∥A
−1|b⟩∥

∥A−1∥ η) suffices to make Equation 4 hold.
If we directly use the amplitude amplification to boost the success probability, we need

O

(
1

∥(1
4
3∥A−1∥A

−1 + Λ) |b⟩ ∥

)
= O(

∥A−1∥
∥A−1 |b⟩ ∥

) (9)

queries to OA−1 and Ob, notice that we then need O(κ∥A
−1∥

∥A−1|b⟩∥ log(
∥A−1∥

∥A−1|b⟩∥η)) queries to OA and O†
A.

In summary, we know that, in order to achieve an accuracy ϵ in A−1|b⟩
∥A−1|b⟩∥ , we need

O
(

∥A−1∥
∥A−1 |b⟩ ∥

Cost(Ob) +
κ∥A−1∥
∥A−1 |b⟩ ∥

log

(
∥A−1∥

∥A−1 |b⟩ ∥η

)
Cost(OA)

)
(10)

in total.

Remark 2. Notice that
∥A−1∥

∥A−1 |b⟩ ∥
≤ ∥A∥∥A−1∥ = κ, (11)

meaning in the worst case senario, the linear system solver based on QSVT scales quadratically on
the condition number. While for the queries to the state preparation oracle, it achieves the optimal
scaling.

1.2 Optimal Scaling with Block Preconditioning
Much surprisingly, compared with [Cos+22; Dal24], the optimal scaling (O(κ log(1/ϵ))) about OA can
be easily achieved with the technique called Block Preconditioning.

For the QLSP problem
A |x⟩ = |b⟩ , (12)

2

consider S = s |b⟩ ⟨b|+ (I − |b⟩ ⟨b|) = Ob(
1−s
2 (I − 2 |0⟩ ⟨0|) + 1+s

2 I)O†
b , for some s ∈ (0, 1). Then it is

easy to verify that
S−1 =

1

s
|b⟩ ⟨b|+ (I − |b⟩ ⟨b|), (13)

since

(s |b⟩ ⟨b|+ (I − |b⟩ ⟨b|))
(
1

s
|b⟩ ⟨b|+ (I − |b⟩ ⟨b|)

)
= I. (14)

The important observation is that

(SA)−1 |b⟩ = A−1S−1 |b⟩ = 1

s
A−1 |b⟩ , (15)

meaning S can be used as a preconditioner. The above equation indicates ∥(SA)−1 |b⟩ ∥ = 1
s∥A

−1 |b⟩ ∥.
The rest is to bound ∥(SA)−1∥

∥(SA)−1|b⟩∥ .

∥(SA)−1∥ = ∥A−1S−1∥ = ∥A−1(
1

s
|b⟩ ⟨b|+ (I − |b⟩ ⟨b|))∥ = ∥1

s
A−1 |b⟩ ⟨b|+A−1(I − |b⟩ ⟨b|)∥

≤
(

1

s2
∥A−1 |b⟩ ⟨b| ∥2 + ∥A−1(I − |b⟩ ⟨b|)∥2

)1/2

≤
(

1

s2
∥A−1 |b⟩ ∥2 + ∥A−1∥2

)1/2

.

(16)

Suppose we have an estimation to t = O(∥A−1 |b⟩ ∥), take s = t
αA−1

, we have

∥(SA)−1∥ = O(αA−1), ∥(SA)−1 |b⟩ ∥ = O(αA−1) (17)

and
∥(SA)−1∥

∥(SA)−1 |b⟩ ∥
= O(1). (18)

Notice that in the current scenario, we still have κSA ≈ κA, so the final cost should be

O (κ log(1/ϵ)Cost(Ob) + κ log (1/ϵ)Cost(OA)) . (19)

Remark 3. We should notice that the preconditioner S actually does not improve the condition number
of A, but it boost the parameter κ ≤ ∥A−1∥

|A−1|b⟩⟩ into (SA)−1

(SA)−1|b⟩ = O(1). The reason we cannot achieve the
optimal scaling on the query complexity about Ob is we need Ob to construct S.

2 (Tunable) Variable Time Amplitude Amplification
If we have a sequence of quantum algorithms A1, A2, · · · , Am, a starting state |ψ0⟩, and the success
is flagged by a projection Πb = I −Πb, naively apply the algorithms leads to a success probability of

psucc = ∥ΠbAm · · ·A1 |ψ0⟩ ∥2. (20)

Then it is quite easy to see that we may apply O(1/
√
psucc) rounds of vanalla amplitude amplification,

which leads to a total cost of

O

 1
√
psucc

Cost(|ψ0⟩) +
1

√
psucc

m∑
j=1

Cost(Aj)

 . (21)

3

2.1 VTAA
In [LS24], they give a formal definition of Variable time algorithm amplification. Here I present it
without any modification:

Definition 4 (Variable Time Algorithm and Amplification). A variable time quantum algorithm is a
3-tuple

(
{Πj}mj=0,Πb, {Aj}mj=0

)
satisfying the following axioms.

1. Πj are orthogonal projectoins partially ordered as 0 = Π0 ≤ Π1 ≤ · · · ≤ Πm = I.

2. Πb is an orthogonal projection commuting with all Πj: ΠbΠj = ΠjΠb.

3. Aj are unitaries such that AjΠj−1 = Πj−1, A0 = I.

A variable time amplification algorithm is a 5-tuple
(
{Πj}mj=0,Πb, {Aj}mj=0, {Ãj}mj=0, |ψ0⟩

)
that

additionally satisfies

4. Ãj are unitaries such that ΠjΠbÃj |ψ0⟩
∥ΠjΠbÃj |ψ0⟩∥

=
ΠjΠbAjÃj−1|ψ0⟩

∥ΠjΠbAjÃj−1|ψ0⟩∥
.

It is worth noting here that by letting Aj = Πj−1 +Πj−1AjΠj−1 suffices to keep AjΠj−1 = Πj−1.
One should understand this as Aj is a unitary controlled on Πj−1. So the the registers that algorithms
{Aj}mj=1 are acting on gradually shrinks. VTAA is an algorithm that captures this property. And the
requirement 4 guarantees that finally we can get the state we want.

Another important property given by the axioms is∥∥∥ΠhΠbAh · · ·Aj+1Ãj |ψ0⟩
∥∥∥∥∥∥ΠkΠbAk · · ·Aj+1Ãj |ψ0⟩
∥∥∥ =

∥∥∥ΠhΠbAh · · ·Al+1Ãl |ψ0⟩
∥∥∥∥∥∥ΠkΠbAk · · ·Al+1Ãl |ψ0⟩
∥∥∥ , for 0 ≤ l, j ≤ k, h ≤ m. (22)

And a specital form of it is∥∥∥Πl+1ΠbAl+1Ãl |ψ0⟩
∥∥∥∥∥∥ΠlΠbÃl |ψ0⟩

∥∥∥ =

∥∥Πl+1ΠbAl+1 · · ·A1 |ψ0⟩
∥∥∥∥ΠlΠbAl · · ·A1 |ψ0⟩

∥∥ , (23)

meaning the potentailly good amplitudes remains the same, regardless of whether we consider the
pre- or poset-amplified algorithms.

A natural choice of Ãj is

Ãj =

(
−
(
I − 2AjÃj−1 |ψ0⟩ ⟨ψ0| Ãj−1

†
A†
j

)
(I − 2ΠjΠb)

)rj
AjÃj−1, (24)

which can be understood as performing the amplitude amplification at the intermediate state j.

Definition 5 (Variable Time Nested Amplitude Amplification). A variable time nested amplitude
amplification is a 5-tuple

(
{Πj}mj=0,Πb, {Aj}mj=0, {rj}mj=0, |ψ0⟩

)
that additionally satisfies

4 rj are nonnegative integers for j = 1, · · · ,m, which define

Ã0 = I,

Ãj =

(
−
(
I − 2AjÃj−1 |ψ0⟩ ⟨ψ0| Ãj−1

†
A†
j

)(
I − 2ΠjΠb

))rj
AjÃj−1.

(25)

4

The cost of the algorithm thus becomes

Cost(Ãj |ψ0⟩) = (2rj + 1)
(

Cost(Aj) + Cost
(
Ãj−1 |ψ0⟩

))
. (26)

Unwrap the recursion, we obtain a variable time nested amplitude amplification Ãm, which has a
query cost of

Cost(Ãm |ψ0⟩) = (2rm + 1)
(

Cost(Am) + Cost
(
Ãm−1 |ψ0⟩

))
= (2rm + 1)

(
Cost(Am) + (2rm−1 + 1)

(
Cost(Am−1) + Cost

(
Ãm−2 |ψ0⟩

)))
=

m∑
j=1

m∏
k=j

(2rk + 1)Cost(Aj) +
m∏
k=1

(2rk + 1)Cost(|ψ0⟩).

(27)

Now it comes to the time to compare Equation 21 and Equation 27. To analyze Equation 27, the
first thing we want to assure is that we did not overshoot. Because∥∥∥ΠjΠbÃj |ψ0⟩

∥∥∥ = sin
(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥)) , (28)

let us try to restrict
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥) ≤ π

2
. (29)

Because x ≤ sin(π2x) holds for x ∈ [−1, 1], the inequality above holds if

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1 |ψ0⟩

∥∥∥ ≤ 1. (30)

Define the loss factor as

lossj =
sin
(
(2rj + 1) arcsin

(∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥))

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1 |ψ0⟩

∥∥∥ =

∥∥∥ΠjΠbÃj |ψ0⟩
∥∥∥

(2rj + 1)
∥∥∥ΠjΠbAjÃj−1 |ψ0⟩

∥∥∥ , (31)

use the estimation of Equation 23, we have
m∏

j=1

lossj

=

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥

(2rm + 1)
∥∥∥ΠmΠbAmÃm−1 |ψ0⟩

∥∥∥
∥∥∥Πm−1ΠbÃm−1 |ψ0⟩

∥∥∥
(2rm−1 + 1)

∥∥∥Πm−1ΠbAm−1Ãm−2 |ψ0⟩
∥∥∥ · · ·

∥∥∥Π1ΠbÃ1 |ψ0⟩
∥∥∥

(2r1 + 1)
∥∥∥Π1ΠbA1Ã0 |ψ0⟩

∥∥∥
=

 m∏
j=1

(
1

2rj + 1

)(m−1∏
l=1

∥ΠlΠb∥Al · · ·A1 |ψ0⟩
∥Πl+1Πb∥Al+1 · · ·A1 |ψ0⟩

)
∥∥∥ΠmΠbÃm |ψ0⟩

∥∥∥
∥Π1ΠbA1 |ψ0⟩ ∥

 =

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥∥∥ΠmΠbAm · · ·A1 |ψ0⟩
∥∥ m∏

j=1

(
1

2rj + 1

)
.

(32)
If the above equation has an estimation of Ω(1), we can estimate Equation 27. Note that similarly we
have

k∏
j=1

lossj =

∥∥∥ΠkΠbÃk |ψ0⟩
∥∥∥∥∥ΠkΠbAk · · ·A1 |ψ0⟩
∥∥ k∏
j=1

(
1

(2rj + 1)

)
. (33)

Thus we can estimate

m∏
j=1

lossj =

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥∥∥ΠmΠbAm · · ·A1 |ψ0⟩
∥∥ m∏
j=1

(
1

2rj + 1

)
=

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥

(psucc)1/2

m∏
j=1

(
1

2rj + 1

)
, (34)

5

m∏
j=k

lossj =
1

(psucc)1/2

∥∥Πk−1ΠbAk−1 · · ·A1 |ψ0⟩
∥∥

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥∥∥∥Πk−1ΠbÃk−1 |ψ0⟩
∥∥∥

m∏
j=k

(
1

2rj + 1

)
. (35)

In the original VTAA [Amb12], they choose rj to be

1

3
√
m

≤ (2rj + 1)∥ΠjΠbAjÃj−1 |ψ0⟩ ∥ ≤ 1√
m
. (36)

Now let us analyze the lower bound of
∏m
j=1 lossj . To do so, we need a proposition of the Dirichlet

kernel.

Lemma 6 (Tight bounds on the Dirichlet kernel). For any ρ ≥ 3 and real number θ ≥ 0 such that
0 ≤ ρθ ≤ π

2 , we have

1− 1

6
ρ2 sin2(θ) ≤ sin(ρθ)

ρ sin(θ)
≤ 1− 4π − 8

π3
ρ2 sin2(θ). (37)

Then we know

1− 1

6
(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥2 ≤ lossj ≤ 1− 4π − 8

π3
(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥2 . (38)

Thus
1 ≥

m∏
j=1

lossj ≥
m∏
j=1

(
1− 1

6
(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥2) = Ω(1), (39)

since
∑m
j=1(2rj + 1)2

∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥2 ≤ 1.

Now we are ready to bound Equation 27.

Ω(1) =

m∏
j=1

lossj =

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥

(psucc)1/2

m∏
j=1

(
1

2rj + 1

)
≤ 1

(psucc)1/2

m∏
j=1

(
1

2rj + 1

)
, (40)

leading to the estimation of
m∏
j=1

(2rj + 1) ≤ 1

(psucc)1/2
. (41)

Furthermore,

Ω(1) =

m∏
j=k

lossj =
1

(psucc)1/2

∥∥Πk−1ΠbAk−1 · · ·A1 |ψ0⟩
∥∥

∥∥∥ΠmΠbÃm |ψ0⟩
∥∥∥∥∥∥Πk−1ΠbÃk−1 |ψ0⟩
∥∥∥

m∏
j=k

(
1

2rj + 1

)

≤
√
m

(psucc)1/2

∥∥Πk−1ΠbAk−1 · · ·A1 |ψ0⟩
∥∥ m∏
j=k

(
1

2rj + 1

)
.

(42)

This gives us
m∏
j=k

(2rj + 1) ≤
√
m

(psucc)1/2

∥∥Πk−1ΠbAk−1 · · ·A1 |ψ0⟩
∥∥ . (43)

So the final query complexity should be

O

 1

(psucc)1/2
Cost(A1 |ψ0⟩) +

(
m

psucc

)1/2 m∑
j=2

∥Πj−1ΠbAj−1 · · ·A1 |ψ0⟩ ∥Cost(Aj)

 . (44)

6

Gengzhi: One must be aware that in the query complexity I computed above, it is slightly different
to that in [LS24]: I did not have a

√
m term in front of the state preparation oracle and A1.

At a first glance, compared with Equation 21, one would thought the complexity of VTAA is
higher. So another property comes into play:

1 = ∥Π0Πb |ψ0⟩ ∥ ≥ ∥Π1ΠbA1 |ψ0⟩ ∥ ≥ · · · ≥ ∥ΠmΠbAm · · ·A1 |ψ0⟩ ∥ = ∥ΠbAm · · ·A1 |ψ0⟩ ∥ = (psucc)
1/2.

(45)
Thus it requires a more detailed analysis to compare those two algorithms.

Remark 7. Here in the description of the algorithm (VTAA), the norm of the final state
∥∥∥Ãm |ψ0⟩

∥∥∥
scales about O(1√

m
). In practice, one may use a different amplitude amplification schedule at the final

step thus the norm is close to unit.

2.2 Tunable VTAA
The difference that the Tunable VTAA made is setting a tighter threshold that determines the am-
plitude amplification schedule for each step.

Definition 8 (Tunable Variable Time Amplitude Amplification). A tunable variable time amplitude
amplification is a 5-tuple

(
{Πj}mj=0,Πb, {Aj}mj=0, {αj}mj=0, |ψ0⟩

)
that additionally satisfies

4 αj are nonnegative real numbers for j = 1, · · · ,m and α0 = 1, which define

rj = min

(
r ∈ Z≥0

∣∣∣∣(2r + 1)
∥∥∥ΠjΠbAjÃj−1 |ψ0⟩

∥∥∥ ≥
√
αj

3

)
,

Ã0 = I,

Ãj =

(
−
(
I − 2AjÃj−1 |ψ0⟩ ⟨ψ0| Ãj−1

†
A†
j

)(
I − 2ΠjΠb

))rj
AjÃj−1.

(46)

Clearly, instead of directly choose every αj = 1√
m

, it is more flexible to introduce some freedom
here by allowing different threshold for each step.

To show there is no overshoot, one must admit
∑m
j=1 αj = O(1) and αj ≤ 1. Then, by definition,

it is easy to show that
(2rj + 1)

∥∥∥ΠjΠbAjÃj−1 |ψ0⟩
∥∥∥ ≤ √

αj ≤ 1. (47)

Moreover, one can show the equivalence between VTAA and Tunable VTAA, which is kind of obvious
by just looking at the definition, since it switches from choosing {rj}mj=1 to choosing {αj}mj=1.

Since nontrivial amplitude amplification is not performed on every step, let say they only happen
at s1, · · · , sl, where s0 = 0 < 1 ≤ s1 ≤ · · · ≤ sl = m. Note that I assume that at the final state, we
will always do the amplitude amplification(Even though it might be a trivial step). This makes the
following complexity slightly different to what they have in [LS24]. Pre-merge all other trilvial steps,
the cost becomes

Cost(Ãm |ψ0⟩) =
l∑

v=1

l∏
u=v

(2rsu + 1)Cost(Asv · · ·Asv−1+1) +

l∏
u=1

(2rsu + 1)Cost(|ψ0⟩). (48)

To see what exactly the cost is, we, again, need to dive into the analysis of the loss factor. Similarly,
with

∑
u αsu = O(1), we know the product of the loss factors is Ω(1).

The computation is basically the same, except we need to re-estimate

∥ΠkΠbÃk |ψ0⟩ ∥ = Ω(
√
αk). (49)

7

So the final complexity is

Cost(Ãm |ψ0⟩) =
l∑

v=2

1

(αsvpsucc)1/2
Cost(Asv · · ·Asv−1+1) +

1

(psucc)1/2
(Cost(|ψ0⟩) + Cost(As1 · · ·A1)) .

(50)
Another important observation is about how many stages we are performing these non-trivial

amplitude amplifications. Leverage Equation 34 again,

3l ≤
l∏

u=1

(2rsu + 1) = O
(

1

(psucc)1/2

)
(51)

gives us the estimation
l = O

(
log3

(
1

(psucc)1/2

))
. (52)

It is interesting to lower bound the complexity of Tunable VTAA 50. Use the so-called weighted
mean inequality, one may show the cost can be optimized to

Cost(Ãm |ψ0⟩) = O
(

1

(psucc)1/2

(
l∑

v=2

(
∥Πsv−1

ΠbAsv−1
· · ·A1 |ψ0⟩ ∥Cost(Asv · · ·Asv−1+1)

)2/3)3/2

+
1

(psucc)1/2
(Cost(|ψ0⟩) + Cost(As1 · · ·A1))

)
.

(53)

I omitted the exact computation here since it can be easily found in the paper [LS24] and the proof
itself is to directly apply the inequality.

8

References
[Amb12] Andris Ambainis. “Variable time amplitude amplification and quantum algorithms for lin-

ear algebra problems”. In: STACS’12 (29th Symposium on Theoretical Aspects of Computer
Science). Vol. 14. LIPIcs. 2012, pp. 636–647.

[Cos+22] Pedro CS Costa et al. “Optimal scaling quantum linear-systems solver via discrete adiabatic
theorem”. In: PRX quantum 3.4 (2022), p. 040303.

[Dal24] Alexander M Dalzell. “A shortcut to an optimal quantum linear system solver”. In: arXiv
preprint arXiv:2406.12086 (2024).

[Gil+19] András Gilyén et al. “Quantum singular value transformation and beyond: exponential
improvements for quantum matrix arithmetics”. In: Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing. 2019, pp. 193–204.

[LS24] Guang Hao Low and Yuan Su. “Quantum linear system algorithm with optimal queries to
initial state preparation”. In: arXiv preprint arXiv:2410.18178 (2024).

9

	Quantum Linear System Solver Based on QSVT
	Previous Results
	Optimal Scaling with Block Preconditioning

	(Tunable) Variable Time Amplitude Amplification
	VTAA
	Tunable VTAA

