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It seems that applying Quantum Annealing techniques on communication problems could result
in a much faster speed. Here I note some of the problems and corresponding solutions.

1 MIMO

The original work [KVJ19] uses the technique described in Section 5, and the resources need are
shown in the figure 1 below. Part of their data is claimed that can be found at [She+16], which leads

Figure 1: MIMO resource needed.

to the Website here. Other data should has been generated in random. There are many numerical
experiments are done, the biggest size requires around 1,000 qubits. For the real-world data mentioned
above, QuAMax requires 2 µs for BPSK and 2-10 µs for QPSK.

For the follow-up work [KVJ20], they developed a hybrid classical-quantum algorithm for the
MIMO problem and a new annealing schedule(Reverse Annealing). Part of the data is from [KVJ19].
They claimed a faster converging time and bigger success probability.

1.1 Vector Perturbation Precoding

The downlink VPP problem is to find an optimal perturbation vector v∗ that minimizes the transmit
power at the base station. The optimization problem is briefly introduced in Section 5.3.

For the size of the problem they are solving, ”We evaluate our proposed QA based VPP (QAVP)
technique on a real Quantum Annealing device over a variety of design and machine parameter settings.
With existing hardware, QAVP can achieve a BER of 10−4 with 100µs compute time, for a 6×6 MIMO
system using 64 QAM modulation at 32 dB SNR.”[Quoted from [Kas+21]]

1.2 Design for Coherent Ising Machines

In work [SVJ22], they designed a special QUBO form to adapt to the Coherent Ising Machine. This
adpatation could be seen at Section 5.4. They performed their numercial experiments on a CIM
simulator. The numerical experiments are done in the configuratoin of 16 users, 16 antennas/32
antennas.
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1.3 Reconfigurable Antenna MIMO Systems

This optimization problem(Section 5.5) is firstly introduced in [KSJ24]. In this paper, they are aiming
at quite small settings, e.g. 4 transmitters and 4 receivers.

2 LDPC

The technique is described in Section 6.
In work [KJ20], it is said that their embedding design can support LDPC codes of block length

up to 420 bits on real state-ofthe-art QA hardware with 2,048 qubits. For the error rate, ”Results
on the real-world quantum annealer show that QBP achieves a bit error rate of 10−8 in 20 µs and a
1,500 byte frame error rate of 10−6 in 50 µs at signal-to-noise ratio of 9 dB over a Gaussian noise
channel”.

3 Polar Codes

In work [KKJ22], they detailed explained how to transforme the Polar codes decoding process into a
QUBO form, which can be seen in Section 7. They describe their problem size as ”We experimentally
evaluate HyPD on a state-of-the-art QA device with 5,627 qubits, for Polar codes of block length 1,024
bits, in Rayleigh fading channels. ... Our decoder targets 1,024-bit 5G-NR Polar codes with BPSK
modulation and 200 message data bits, which is typically the maximum UCI payload in LTE and
5G-NR eMBB scenarios.” The implementation is said to follow the 3GPP Multiplexing and channel
coding standard.

4 Quantum Annealing

4.1 Two Equivalent Formulations

4.1.1 Ising Spin Glass Form

For spins si ∈ {+1,−1},

ŝ1, · · · , ŝN = arg min
{s1,··· ,sN}

∑
i<j

gijsisj +
∑
i

fisi

 . (1)

4.1.2 QUBO Form

Quadratic unconstrained binary optimization is formulated as follows: For qi ∈ {0, 1},

q̂1, · · · , q̂N = arg min
{q1,··· ,qN}

∑
i≤j

Qijqiqj

 . (2)

Here Q ∈ Rn×n is a upper triangular matrix.
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Given a QUBO formulation, by doing qi ↔ 1
2 (si + 1), we could have

ŝ1, · · · , ŝN = arg min
{s1,··· ,sN}

∑
i≤j

Qij(
si + 1

2
)(
sj + 1

2
)


= arg min

s1,s2,··· ,sN

∑
i<j

Qij

4
sisj +

∑
i

Qii

4
s2i +

∑
i

Qii

2
si +

∑
{j:i<j}

Qij

4
si +

∑
{j:j<i}

Qij

4
si


= arg min

s1,s2,··· ,sN

∑
i<j

Qij

4
sisj +

∑
i

Qii

2
si +

∑
{j:i<j}

Qij

4
si +

∑
{j:j<i}

Qij

4
si


= arg min

s1,s2,··· ,sN

∑
i<j

Qij

4
sisj +

∑
i

Qii

2
+

∑
{j:i<j}

Qij

4
+

∑
{j:j<i}

Qij

4

 si

 ,

(3)

which leads to gij =
Qij

4 , fi =
∑

i
Qii

2 +
∑

{j:i<j}
Qij

4 +
∑

{j:j<i}
Qij

4 .

4.2 Coherent Ising Machines

Given the Ising optimization problem

arg min
s∈{±1}

−
∑
j ̸=i

Jijsisj , (4)

the CIM can be modelled by real valued variable xi where si = sign(xi). And the whole process is

dxi

dt
= (1− p)xi − x3

i + ϵ(t)
∑
j ̸=i

Jijxj . (5)

The dynamics above can be further enhanced to

dxi

dt
= (1− p)xi − x3

i + ϵ(t)ei
∑
j ̸=i

Jijxj ,

dei
dt

= −β(x2
i − a)ei.

(6)

5 From MIMO to QUBO Form

The Multiple Input Multiple Output (MIMO) decoding problem is about given Nt mobile users and Nr

antennas (Additionally assume Nr ≥ Nt), solving the maximum likelihood detection problem, which
can be described as a least-square optimization:

v̂ = arg min
v∈CNt ,v generated in ONt

∥y −Hv∥2. (7)

Here |O| = 2Q, i.e. any element in v is generated by Q bits. H = HI + ıHQ is the wireless channel
and y = Hv + n, where v ∈ CNt is the input symbol and n is the noise. One conventional approach
is to use the QR factorization on H.

5.1 ML-to-QA Problem Reduction

Let consider the symbol v = [v1, v2, · · · , vNt
] ∈ CNt . If vi is generated by O where |O| = 2Q, we are

requiring N = QNt solution variables. Now we are in searching of some transform function T (·) such
that T−1(vi) is a Q−bit representation.
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5.1.1 Binary Modulation

In this case, vi = {±1}. Choose Q = 0 and T (qi) = 2qi − 1 converts the problem into the QUBO
form.

5.1.2 QPSK Modulation

In this case, vi = {±1 ± 1ı}. Choose Q = 1 and T (qi) = 2q0i − 1 + ı(2q1i − 1) converts the problem
into the QUBO form. Here qi = [q0i , q

1
i ].

5.2 Higher-order Modulation

Here we focus on 16 quadrature amplitude modulation(16-QAM). For an 1-D constellation
[
00 01 10 11

]
,

since each vi is sampled from such constellation, we need Q = 2 and choose T (qi) = 4q0i + 2q1i − 3,
which takes values of {−3,−1, 1, 3}.

Thus for a 2-D constellation 
0011 0111 1011 1111
0010 0110 1010 1110
0001 0101 1001 1101
0000 0100 1000 1100

 (8)

we just need to take vi = (4q0i + 2q1i − 3) + ı(4q2i + 2q3i − 3), representing vi = {−3,−1, 1, 3} +
ı{−3,−1, 1, 3}.

However, practical wireless communication systems use a different bit-to-symbol mapping as
0010 0110 1110 1010
0011 0111 1111 1011
0001 0101 1101 1001
0000 0100 1100 1000

 , (9)

which is called Gray code. A naive approach should be simply considering the 4-PAM constellation[
00 01 11 10

]
, and take the Gray-coded bit-to-symbol mapping as the transformation, namely

T (qi) = 2(2q0i − 1) + 2(q0i − q1i )
2 − 1. Here we successfully turned the symbol into QUBO variables.

But the resulting expansion of the ML norm would yield cubic and quartic terms.
Alternatively, we can just use the QuAMax transform at the receiver, flip the 3rd and 4th bit

conditioned on the 2nd bit of [q0i , q
1
i , q

2
i , q

3
i ] yields

0011 0100 1011 1100
0010 0101 1010 1101
0001 0110 1001 1110
0000 0111 1000 1111

 . (10)

Denote the intermediate code as [b0i , b
1
i , b

2
i , b

3
i ]. After that, do

g0i = b0i , g1i = b0i ⊕ b1i , g2i = b1i ⊕ b2i , g3i = b2i ⊕ b3i . (11)

This gives us the Gray code.

5.3 Vector Perturbation Precoding

In VPP, the user data symbol u ∈ CNr is perturbed by an integer v ∈ CNr . The optimization becomes

v∗ = argmin
∥∥H†(HH†)−1(u+ τv)

∥∥2 . (12)

Here τ is a constant.
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Consider the k-th entry in v as ak + ıbk, we then can represent ak or bk as

t∑
m=1

2m−1qm − 2tqt+1, (13)

which takes all the integers from [−2t, 2t − 1]. Plug everything back yields a QUBO form.

5.4 Complex to Real Dilation

Take

H ′ =

[
ℜ(H) −ℑ(H)
ℑ(H) ℜ(H)

]
, y′ =

[
ℜ(y)
ℑ(y)

]
, v′ =

[
ℜ(v)
ℑ(v)

]
, (14)

We can get an equivalent real valued system as

v = argmin ∥y′ −H ′v′∥2. (15)

Inspired by the Coherent ising machines, take an initial guess symbol xm, denote the solution as u,
then define d = u− xm. Since u and xm are symbols(dilated version), we know each entry in d must
be an even integer. Then we can always write

d = Ts, (16)

where T = [2nI2Nt
, 2n−1I2Nt

, · · · , 2I2Nt
, I2Nt

, I2Nt
], s = [s0, s1, · · · , s2Nt−1]

⊤, si = ±1. The optimiza-
tion problem can be re-formulated as

argmin
d

∥y′ −H ′(d+ xm)∥ = argmin
d

∥(y′ −H ′xm)−H ′d∥. (17)

The remaining problem is that the problem above has both linear and Quadratic terms. However,
this can be solved by adding one ancilla qubit.

5.5 Reconfigurable Antenna MIMO

For two diagonal matices X of size NNT and Y of size NNR(their elements should be 0’s and 1’s),
the optimization goal is

max
X,Y

Tr(XG⊤Y G), (18)

subject to
(k+1)N∑
i=kN+1

xii = 1,

(k+1)N∑
i=kN+1

yii = 1, (19)

for k range from 0 to NT − 1 or NR − 1.
Prolong the diagonal lines of X and Y and store them in one vector denoted as b, take Q =[
0 1

2T
1
2T

⊤ 0

]
, where T = G⊚2 is of size NNT ×NNR, we have the following quadratic form:

argmax b⊤Qb, Pk(b) =

(k+1)N∑
i=kN+1

bi − 1 = 0. (20)

It is possible to convert the optimization problem above into a quadratic form and use the constraint
as part of the optimization objective function. After that just use the CIM solver.
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6 LDPC Codes

The Low Density Parity Check Code (LDPC) is a linear error correcting code. A binary (N,K)
LDPC code is a linear block code described functionally by a sparse parity check matrix H of size
(N −K)×N = M ×N . It is said to be a (db, dc) regular code if each column of H contains exactly
db 1’s and each row of H contains exactly dc 1’s.

6.1 LDPC Encoder

Consider a message u of length K, M = N −K.

1. Convert H into [P |IN−K ] by Gaussian elimination. Here P is a matrix of size M ×K.

2. Construct G = [IK |P⊤]. G is of size K × (M +K) = K ×N .

3. Encode u into c = uG. Note here the ”matrix-vector” multiplication is in the modulo-2 sense.

This way of encoding ensures that the modulo two bit-sum at every check node is zero. Notice that
the first 3-bits are exactly the original message itself!

6.2 LDPC Decoder

We call a binary bit string x = [x0, x1, · · · , xN−1] as the decoded message if xH⊤ = 0(in the modulo
2 sense). That is the reason why H is called the parity-check matrix.

6.3 QUBO Form

We are designing a loss function for x such that the minimum satisfies xH⊤ = 0(In the modulo 2
sense). A straight forward way is to introduce some ancilla qubits, say {qeik}i, and define

Li = xH(:, i)− 2(qei1 + 2qei2 + · · ·+ 2...qeik). (21)

The latter term defined any even number that can be possibly expressed by xH(:, i).
Also we can add some distance function ∆i := (qi − P(qi = 1|yi))2, where y is the vector received.

The final QUBO form could be a linear combination of these two.

7 Polar Codes

Polar codes are a linear block error-correcting codes. Pre-decide the K most reliable bit-channels,
encode the message m = [m0, · · · ,mK−1] into u = [u0, · · · , uN−1], set the rest of the bits as 0. The
encoding process can be easily described as

x = uGN , (22)

where GN = G⊗n
2 , G2 =

[
1 0
1 1

]
. u is the input vector and x is the encoded codeword.

Alternatively, for the input u0 and u1, encode it as [u0 ⊕ u1, u1]. Same process also applys for two
input vectors: for input uL and uR, encode them as [uL⊕uR, uR]. An example is provided as follows:

u0, u1, u2, u3 −→ [u0 ⊕ u1, u1], [u2 ⊕ u3, u3] −→ [u0 ⊕ u1 ⊕ u2 ⊕ u3, u1 ⊕ u3, u2 ⊕ u3, u3]. (23)

Set q = [q0, · · · , qN−1] as our solution vector, and any ai is ancilla qubit for computation. The
QUBO form consists 3 parts: For any node T for performing the XOR operation,

CN (T ) =
∑
i,j

(bi + bj − ak − 2ak+1)
2. (24)
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The bi and bj is determined from earlier nodes. Still take our example in Equation 23,

CN (T1,0) = (q0 + q1 − a1 − 2a2)
2,

CN (T1,1) = (q2 + q3 − a3 − 2a4)
2,

CN (T2,0) = (a1 + a3 − a5 − 2a6)
2 + (q1 + q3 − a7 − 2a8)

2.

(25)

And the final codeword is b = [a5, a7, a3, q3].
The second constraint is about the frozen bits. As stated as before, some bits are intentionally set

as 0.
CF (qi) = qi. (26)

The third constraint is about how our codeword matches with the received vector y.

CR(bj) =
∑
j

(b− P(bj = 1|y))2. (27)

This can only obtained from other estimations.
The final QUBO form should be a weighted linear combination of the three constraints mentioned

before.
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