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The mixing time of an open quantum system is an important question. Previous literature often
relies on estimating the spectral gap of the Lindbladian generator. A recent interesting work [2]
proposed a theoretical framework of obtaining the mixing time, without relying on the estimation of
the spectral gap, based on several assumptions. Here I reviewed some related mathematical concepts
in functional analysis and discussed the high-level ideas in [2].

1 A Brief Review of Dual Space
In this section the materials are mainly re-organized from wikipedia [1, 3, 5].

Definition 1 (Dual Space). Given any vector space V over a field F , the dual space is defined V ∗ as
the set of all linear maps ϕ : V → F . The dual space V ∗ itself becomes a vector space over F :

(ϕ+ ψ)(x) = ϕ(x) + ψ(x),

(aϕ)(x) = aϕ(x).
(1)

Here x ∈ V , ϕ, ψ are in V ∗ and a ∈ F .

Definition 2 (Algebraic Adjoint). Let X∗ denote the dual space of a vector space X, and Y ∗ is the
dual space of a vector space Y . If u : X → Y is a linear map, then its adjoint map u∗ : Y ∗ → X∗ is
defined as u∗f = fu, where f ∈ Y ∗. This can also be characterized as

⟨u∗f, x⟩ = ⟨f, ux⟩, (2)

where x ∈ X and ux ∈ Y .

For some matrix A ∈ Cm×n, x ∈ Cn, y ∈ Cm, take the usual inner product in the complex domain,
we have

⟨Ax, y⟩ = (Ax)†y = x†A†y = ⟨x,A†y⟩. (3)

Thus it is easy to see that for a finite-dimensional linear map described as a matrix A, its adjoint is
its conjugate transpose A†.

Now let us consider a Lindbladian master equation:

d

dt
ρ = L∗ρ,

L∗ = −ı[H, (·)] +
∑
j

[Vj(·), V †
j ] + [Vj , (·)V †

j ].
(4)

Here ρ is some density operator in a vector space X. For some observable A, we can view A as a
member in X∗, where

⟨A, ρ⟩ := A(ρ) = Tr(Aρ). (5)
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Consider L∗ as a linear map that maps from X to X, then its adjoint L maps an observable to another
observable, defined as

L = ı[H, (·)] +
∑
j

[V †
j (·), Vj ] + [V †

j , (·)Vj ] = H+D, (6)

which is simply the conjugate transpose of L∗. Thus the adjoint dynamics is
d

dt
A = LA. (7)

Not let us re-consider Equation 5.

⟨eLtA, ρ⟩ = ⟨A, eL
∗tρ⟩. (8)

This inspired us that if eL∗tρ goes to its equilibrium σ,

lim
t→∞

⟨eLtA, ρ⟩ = lim
t→∞

⟨A, eL
∗tρ⟩ = ⟨A, σ⟩ = ⟨A, eL

∗τσ⟩ = ⟨eLτA, σ⟩. (9)

Again make τ goes to infinity, we can see the limit of eLtA should be Tr(Aσ)I, because of the arbitrary
choice of ρ. We can foresee that the speed of eLtA goes to Tr(Aσ)I could be used to quantify the
speed of eL∗tρ goes to σ.
Remark 3 ([4]). For a CPTP map ϕ, its adjoint ϕ∗ is unital, i.e. ϕ∗(I) = I. It is worth noting that
actually for any kI, ϕ∗(kI) = kI.

2 High-level Overview of the Estimation
As I stated before, now we turn to quantify the speed of eLtA goes to Tr(Aσ)I. Given the GNS
inner-product defined as

⟨A,B⟩GNS := Tr
(
σA†B

)
. (10)

Note here in the original paper [2], they are stating an equilibrium I.
So the distance between A and the equilibrium Tr(Aσ)I is

A := A− ⟨A,Tr(Aσ)I⟩GNS
⟨Tr(Aσ)I,Tr(Aσ)I⟩GNS

Tr(Aσ)I = A− Tr (Aσ) I. (11)

Remark 4. This can also be easily understood as the difference between the starting point and its
equilibrium.

An important property here is that Tr (Aσ) = 0. Consider the set of Hermitian operators SA :=
{A : Tr (Aσ) = 0}, we are hoping that eLt damps any element in SA. If this holds true,∥∥∥eL∗tρ− σ

∥∥∥
1
= sup

−I≤A≤I
Tr

(
A(eL

∗tρ− σ)
)
= sup

−I≤A≤I
Tr

(
AeL

∗tρ−Aσ
)

= sup
−I≤A≤I

Tr
(
AeL

∗tρ
)
− Tr (Aσ) = sup

−I≤A≤I
⟨A, eL

∗tρ⟩ − Tr (Aσ)

= sup
−I≤A≤I

⟨eLtA, ρ⟩ − Tr (Aσ) = sup
−I≤A≤I

⟨eLt(A− Tr (Aσ) I), ρ⟩+ Tr (Aσ)− Tr (Aσ)

= sup
−I≤A≤I

⟨eLt(A− Tr (Aσ) I), ρ⟩ = sup
−I≤A≤I

Tr
(
eLt(A− Tr (Aσ) I)ρ

)
= sup

−I≤A≤I
Tr

(
σσ−1ρeLt(A− Tr (Aσ) I)

)
= ⟨σ−1ρ, eLt(A− Tr (Aσ) I)⟩GNS ≤ ∥σ−1ρ∥GNS

∥∥eLt(A− Tr (Aσ) I)
∥∥

GNS .

(12)

In fact, it is possible to have the theorem below:
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Theorem 5 (Main result in [2]). Under certain conditions, there exists positive constants λ and C,
such that for some Hermitian operator A satisfying Tr (Aσ) = 0, we have∥∥eLtA

∥∥
GNS ≤ Ce−λt ∥A∥GNS . (13)

Now we need to design the conditions needed to damp the elements in SA. Take A ∈ SA, define
A(t) = etLA = et(D+H)A. Condiser L(A(t)) := 1

2 ∥A(t)∥
2
GNS, and its derivative is −D(A(t)) :=

d
dtL(A(t)) =

1
2 ⟨(D +H)A(t), A(t)⟩GNS + 1

2 ⟨A(t), (D +H)A(t)⟩GNS = ℜ⟨DA(t), A(t)⟩GNS.
We are hoping to show that D(A(t)) ≥ κ ∥A(t)∥GNS for some positive κ, and this can be achieved

by providing some assumptions on H and D. The details can be found in [2].

Remark 6. Actually one shuold use an equivalent norm of L(A) other than the exact L(A) itself to
prove the desired properties.
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