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Combinatorial problems, such as Ising problems, are important while hard to solve. Here in this
note I tried to review and summarize a heuristic solver called SB (Simulation Bifurcation). It is
inspired by adiabatic evolution in quantum computing, but relies on a classical analog.

1 Quantum Harmonic Oscillator

The quantum harmonic oscillator, analogous to the classical harmonic oscillator, serves as a very
important model in quantum mechanics. In this section I aim to briefly review its basics. Most of the
contents below are from [0].

Given a Hamiltonian H = % + k&2 of the system, define its energy eigenstates {|n)} as
Hn) = En[n). (1)

This tells us that {|n)}2, form an orthogonal basis.
Developed by Paul Dirac, the annihilation operator a and the creation operator af are defined as

a'ln)=vn+1jn+1),
aln) =+v/nin—1).

o= B (). o= B (o ) ®

where w = /k/m is the angular frequency. One can represent the position and momentum using a

and af:
R h . hmw
x:\/Qmw(aT—i—a), p=nl— (a' — a). (4)

It is worth noting that a|0) = 0 = 0|0), indicating the state is completely annihilated. Thus the
vacuum state |0) is defined to be the state with the lowest possible energy.

Firstly we need to discuss the eigenvalues of the annihilation/creation operator. Take [¢) =
> yen|n), if it is an eigenvector of al with eigenvalue ,

(2)

Additionally they admit

aTW}>:chvn+1|n+l>:ch—l\/ﬁ|n>:2kcn|n>' (5)

n=0 n=0

It is clear that k # 0. For other cases, ¢cg = 0, and ¢, _14/n = kc,. This makes a’ has no eigenstates.
If |¢) is an eigenstate of a,

aly) = ch+1vn—|—1\n> = chn n) . (6)
n=0 n=0



This leads to k = p”“ci "‘H We then take ¢, = % To normalize, one can apply the inverse of the

following:
= elkl*/2, (7)
We then thus define the coherent states
N e
a)=-¢e ). 8
) > Tl 0
as the eigenvectors of the annihilation operator, i.e.
ala) = ala). (9)

It is worth noting that {|a)} also form a (overcomplete) basis.
We can also define the number operator N := a'a, which is positive semi-definite. Simple compu-
tation yields
Nn) =a'a|n) = vna'|n —1) =n|n). (10)
2 Simulation Bifurcation and the Classical Mechanics
Example 1 (Hamiltonian from [1]). Consider a Hamiltonian

H= h%(aT)zaz il (@ + (@), (1)

where a and a' are the annihilation and creation operators for quanta of the oscillator, K and p are
constants, its ground state are the coherent states |£+/p/K).

Proof. An important observation [2] is that, in the sense of ignoring some constants.

H= % ((aT)2 - f{) (a2 - f{) (12)

It can be further observed that H is positive semi-definite, since (a? — %)T = ((aT)2 - Ip() Take the

coherent state |y/p/K) or |—+/p/K), we have

H|+v/p/K) =0. (13)
Thus |£4/p/K) is the ground state of H. O
Example 2. For Hamiltonian
H = hAdta + h%(aT)2a2 - h‘g(a2 + (ah)?), (14)
Notice that [a,a'] = 1 and ignoring some constants, it can be re-written as
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Notice that (a — a') is anti-Hermitian, indicating its eigenvalues are all imaginary. Thus (a — at)?
is negative semi-definite. Treat the detuning term hAa'a as a perturbation [?], the ground state is

/22,

To understand the Hamiltonian in Equation 14 better, let us consider its classical analog. Set the
expectation of a as x + 1y, where z and y should be understood as location and momentum, we have

i hK
Hclasslcal AN (x2 y2) 5 (x2 y2)2 (hp) (x2 y2)’ (16)
and the dynamics follows

dz chlassical
Ty e 2hK (2° + y?)y + 2hpy = y(A +p + K(a? + 7)),
% chlassical
dt Or

When p < A, the dynamics above only admits one equilibrium, i.e. x =y = 0. When p > A, the
stable fixed points are now = £./(p — A)/K,y = 0. This inspires us to leverage the bifurcation
signs of x for combinatorial problems.

(17)

= —2hAz + —2hK (2* + y*)z + 2hpr ~ 2(—A + p — K (2% + ¢?)).

3 Simulation Bifurcation for Combinatorial Optimization

The Ising problem, formulated as minimizing the following energy:

LN
Erging = —3 Z Z Ji,j8i85, (18)

i=1 j=1

where the spins {s;} take +1.
Take the Hamiltonians {H;} as in Equation 14 and introduce a new parameter £y, we can couple

them as
N N N N
H = ZHl - hfo Z Z J@j(d}&j). (19)
=1

i=1 j=1

The parameter & is set such that His positive semi-definite, making the vacuum state still serve as
the ground state when p = 0.
Denote ag = +/(p — A)/K, Example 2 tells us by increasing p slowly we finally will get state

s) = |s1ag) - - |snag), where s; = £1. And the corresponding energy is
) P g gy
B N
(s| H |s) = const — h&pa% Z Ji,jSiS;. (20)
ij=1

Thus we expect the solution to the Ising problem is carried by the signs of the coherent states.
Again, if we consider the classical analog of H,

N N
Hclassical — Z Hiclassical _ h§0 Z Jz‘,j (xil'j + yiyj)' (21)

i=1 i,j=1

Thus the dynamics is

diCZ' aj_:rclassical N
= ———— > y(A+p+ K(z} +97)) - fOZJi,jyj,
j=1

dt 8yi
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Remark 3. If one believes that the dynamics driven by the Hamiltonian Heclassical jg capable of finding
the minima, the signs of x; provide the solution to the Ising problem.

In order to get a faster (parallel) implementation, the above Hamiltonian inspires us to design

YA

i=1

Here V(z,t) should be designed that it contains the Ising energy and bifurcation.
A possible setting is given in [3]:

Vi,t) =Y (x + = a-pl) ?) Z Ji T (24)

i=1 i,j=1

When p(t) < A, the first term Zf\il (%x? + Afzp(t) :1712) admits only one minima at x; = 0. While

p(t)—A

o
Set {x;} and {y;} initially around zero, gradually increase p(t), and the hope is that the dynamics
has a high probability to go to the global minima, where the sign of z;’s represent the solution to the

Ising problem. The updating rule is

p(t) > A, it gets 2" minimas at z; = +

dz;
i A ;
0 Yis
dy; N (25)
5 = —wilEal = p(t) + A) + & ; Ji -

4 Improved Design of Potential Functions

To prevent analog errors, it is possible to introduce perfectly inelastic walls at z; = 1 [4]. Define
A
Vosp = Z 71’ 2~ o ZZJJ:Z;JJ, when |z <1, 28)
=1 1=1 j=1

Vbsg := 00, otherwise.
One can normalize part of the updating rule, introducing Vgsp [4]:

A— p &
VosB 1= Z 2 0 ZZJ i sign(z;), when |z;| <1, (@7)
i=1 1=1 j=1

Vbsp := 00, otherwise.

In [5], a thermal fluctuation is added. And the corresponding updating rule is
dz;
i A ;
dt vi
dy; . A
% —zi(A = p(t) + cofi — Ewi, (28)

N
d¢ 1 9
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Here M and T = Z _,y2/N are constants, and ¢ is acting as thermal fluctuation.



References

[1] Hayato Goto. “Bifurcation-based adiabatic quantum computation with a nonlinear oscillator
network”. In: Scientific reports 6.1 (2016), p. 21686.

[2] Hayato Goto. “Quantum computation based on quantum adiabatic bifurcations of Kerr-nonlinear
parametric oscillators”. In: Journal of the Physical Society of Japan 88.6 (2019), p. 061015.

[3] Hayato Goto, Kosuke Tatsumura, and Alexander R Dixon. “Combinatorial optimization by simu-
lating adiabatic bifurcations in nonlinear Hamiltonian systems”. In: Science advances 5.4 (2019),
eaav2372.

[4] Hayato Goto et al. “High-performance combinatorial optimization based on classical mechanics”.
In: Science Advances 7.6 (2021), eabe7953.

[6] Taro Kanao and Hayato Goto. “Simulated bifurcation assisted by thermal fluctuation”. In: Com-
munications Physics 5.1 (2022), p. 153.

[6] Quantum harmonic oscillator. https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator.


https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator

	Quantum Harmonic Oscillator
	Simulation Bifurcation and the Classical Mechanics
	Simulation Bifurcation for Combinatorial Optimization
	Improved Design of Potential Functions

