
Simulation Bifurcation

Gengzhi Yang

January 6, 2025

Combinatorial problems, such as Ising problems, are important while hard to solve. Here in this
note I tried to review and summarize a heuristic solver called SB (Simulation Bifurcation). It is
inspired by adiabatic evolution in quantum computing, but relies on a classical analog.

1 Quantum Harmonic Oscillator

The quantum harmonic oscillator, analogous to the classical harmonic oscillator, serves as a very
important model in quantum mechanics. In this section I aim to briefly review its basics. Most of the
contents below are from [6].

Given a Hamiltonian H = p̂2

2m + 1
2kx̂

2 of the system, define its energy eigenstates {|n⟩} as

H |n⟩ = En |n⟩ . (1)

This tells us that {|n⟩}∞n=0 form an orthogonal basis.
Developed by Paul Dirac, the annihilation operator a and the creation operator a† are defined as

a† |n⟩ =
√
n+ 1 |n+ 1⟩ ,

a |n⟩ =
√
n |n− 1⟩ .

(2)

Additionally they admit

a =

√
mω

2ℏ

(
x̂+

ı

mω
p̂
)
, a† =

√
mω

2ℏ

(
x̂− ı

mω
p̂
)
, (3)

where ω =
√
k/m is the angular frequency. One can represent the position and momentum using a

and a†:

x̂ =

√
ℏ

2mω
(a† + a), p̂ = ı

√
ℏmω
2

(a† − a). (4)

It is worth noting that a |0⟩ = 0 = 0 |0⟩, indicating the state is completely annihilated. Thus the
vacuum state |0⟩ is defined to be the state with the lowest possible energy.

Firstly we need to discuss the eigenvalues of the annihilation/creation operator. Take |ψ⟩ =∑∞
n=0 cn |n⟩, if it is an eigenvector of a† with eigenvalue k,

a† |ψ⟩ =
∞∑

n=0

cn
√
n+ 1 |n+ 1⟩ =

∞∑
n=1

cn−1

√
n |n⟩ =

∞∑
n=0

kcn |n⟩ . (5)

It is clear that k ̸= 0. For other cases, c0 = 0, and cn−1
√
n = kcn. This makes a† has no eigenstates.

If |ψ⟩ is an eigenstate of a,

a |ψ⟩ =
∞∑

n=0

cn+1

√
n+ 1 |n⟩ =

∞∑
n=0

kcn |n⟩ . (6)
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This leads to k = cn+1

√
n+1

cn
. We then take cn = kn

√
n!
. To normalize, one can apply the inverse of the

following: √√√√ ∞∑
n=0

(|k|2)n
n!

= e|k|
2/2. (7)

We then thus define the coherent states

|α⟩ = e−|α|2/2
∞∑

n=0

αn

√
n!

|α⟩ . (8)

as the eigenvectors of the annihilation operator, i.e.

a |α⟩ = α |α⟩ . (9)

It is worth noting that {|α⟩} also form a (overcomplete) basis.
We can also define the number operator N := a†a, which is positive semi-definite. Simple compu-

tation yields
N |n⟩ = a†a |n⟩ =

√
na† |n− 1⟩ = n |n⟩ . (10)

2 Simulation Bifurcation and the Classical Mechanics

Example 1 (Hamiltonian from [1]). Consider a Hamiltonian

H = ℏ
K

2
(a†)2a2 − ℏ

p

2
(a2 + (a†)2), (11)

where a and a† are the annihilation and creation operators for quanta of the oscillator, K and p are
constants, its ground state are the coherent states |±

√
p/K⟩.

Proof. An important observation [2] is that, in the sense of ignoring some constants.

H =
ℏK
2

(
(a†)2 − p

K

)(
a2 − p

K

)
. (12)

It can be further observed that H is positive semi-definite, since
(
a2 − p

K

)†
=

(
(a†)2− p

K

)
. Take the

coherent state |
√
p/K⟩ or |−

√
p/K⟩, we have

H |±
√
p/K⟩ = 0. (13)

Thus |±
√
p/K⟩ is the ground state of H.

Example 2. For Hamiltonian

H = ℏ∆a†a+ ℏ
K

2
(a†)2a2 − ℏ

p

2
(a2 + (a†)2), (14)

Notice that [a, a†] = 1 and ignoring some constants, it can be re-written as

H ≃ ℏK
2

(
(a†)2 − p−∆

K

)(
a2 − p−∆

K

)
+ ℏ∆a†a− ℏ∆

2
(a2 + (a†)2)

=
ℏK
2

(
(a†)2 − p−∆

K

)(
a2 − p−∆

K

)
− ℏ∆

2
(a2 − 2a†a+ (a†)2)

≃ ℏK
2

(
(a†)2 − p−∆

K

)(
a2 − p−∆

K

)
− ℏ∆

2
(a2 − a†a− aa† + (a†)2)

=
ℏK
2

(
(a†)2 − p−∆

K

)(
a2 − p−∆

K

)
− ℏ∆

2
(a− (a†))2.

(15)
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Notice that (a − a†) is anti-Hermitian, indicating its eigenvalues are all imaginary. Thus (a − a†)2

is negative semi-definite. Treat the detuning term ℏ∆a†a as a perturbation [2], the ground state is

|±
√

p−∆
K ⟩.

To understand the Hamiltonian in Equation 14 better, let us consider its classical analog. Set the
expectation of a as x+ ıy, where x and y should be understood as location and momentum, we have

Hclassical = ℏ∆(x2 + y2) +
ℏK
2

(x2 + y2)2 − (ℏp)(x2 − y2), (16)

and the dynamics follows

dx

dt
=
∂Hclassical

∂y
= 2ℏ∆y + 2ℏK(x2 + y2)y + 2ℏpy ≃ y(∆ + p+K(x2 + y2)),

dy

dt
= −∂H

classical

∂x
= −2ℏ∆x+−2ℏK(x2 + y2)x+ 2ℏpx ≃ x(−∆+ p−K(x2 + y2)).

(17)

When p < ∆, the dynamics above only admits one equilibrium, i.e. x = y = 0. When p ≥ ∆, the
stable fixed points are now x = ±

√
(p−∆)/K, y = 0. This inspires us to leverage the bifurcation

signs of x for combinatorial problems.

3 Simulation Bifurcation for Combinatorial Optimization

The Ising problem, formulated as minimizing the following energy:

EIsing = −1

2

N∑
i=1

N∑
j=1

Ji,jsisj , (18)

where the spins {si} take ±1.
Take the Hamiltonians {Hi} as in Equation 14 and introduce a new parameter ξ0, we can couple

them as

H̃ =

N∑
i=1

Hi − ℏξ0
N∑
i=1

N∑
j=1

Ji,j(a
†
iaj). (19)

The parameter ξ0 is set such that H̃ is positive semi-definite, making the vacuum state still serve as
the ground state when p = 0.

Denote αS =
√
(p−∆)/K, Example 2 tells us by increasing p slowly we finally will get state

|s⟩ = |s1αS⟩ · · · |sNαS⟩, where si = ±1. And the corresponding energy is

⟨s| H̃ |s⟩ = const− ℏξ0α2
S

N∑
i,j=1

Ji,jsisj . (20)

Thus we expect the solution to the Ising problem is carried by the signs of the coherent states.
Again, if we consider the classical analog of H̃,

H̃classical =

N∑
i=1

Hclassical
i − ℏξ0

N∑
i,j=1

Ji,j(xixj + yiyj). (21)

Thus the dynamics is

dxi
dt

=
∂H̃classical

∂yi
≃ yi(∆ + p+K(x2i + y2i ))− ξ0

N∑
j=1

Ji,jyj ,

dyi
dt

= −∂H̃
classical

∂xi
≃ xi(−∆+ p−K(x2i + y2i )) + ξ0

N∑
j=1

Ji,jxj .

(22)
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Remark 3. If one believes that the dynamics driven by the Hamiltonian H̃classical is capable of finding
the minima, the signs of xi provide the solution to the Ising problem.

In order to get a faster (parallel) implementation, the above Hamiltonian inspires us to design

Hsb =

N∑
i=1

∆

2
y2i + V (x, t). (23)

Here V (x, t) should be designed that it contains the Ising energy and bifurcation.
A possible setting is given in [3]:

V (x, t) =

N∑
i=1

(
K

4
x4i +

∆− p(t)

2
x2i

)
− ξ0

2

N∑
i,j=1

Ji,jxixj . (24)

When p(t) ≤ ∆, the first term
∑N

i=1

(
K
4 x

4
i +

∆−p(t)
2 x2i

)
admits only one minima at xi = 0. While

p(t) > ∆, it gets 2N minimas at xi = ±
√

p(t)−∆
K .

Set {xi} and {yi} initially around zero, gradually increase p(t), and the hope is that the dynamics
has a high probability to go to the global minima, where the sign of xi’s represent the solution to the
Ising problem. The updating rule is

dxi
dt

= ∆yi,

dyi
dt

= −xi(Kx2i − p(t) + ∆) + ξ0

N∑
j=1

Ji,jxj .
(25)

4 Improved Design of Potential Functions

To prevent analog errors, it is possible to introduce perfectly inelastic walls at xi = ±1 [4]. Define

VbSB :=

N∑
i=1

∆− p(t)

2
x2i −

ξ0
2

N∑
i=1

N∑
j=1

Ji,jxixj , when |xi| ≤ 1,

VbSB := ∞, otherwise.

(26)

One can normalize part of the updating rule, introducing VdSB [4]:

VbSB :=

N∑
i=1

∆− p(t)

2
x2i −

ξ0
2

N∑
i=1

N∑
j=1

Ji,jxi sign(xj), when |xi| ≤ 1,

VbSB := ∞, otherwise.

(27)

In [5], a thermal fluctuation is added. And the corresponding updating rule is

dxi
dt

= ∆yi,

dyi
dt

= −xi(∆− p(t)) + c0fi − ξyi,

dξ

dt
=

1

M

(
N∑
i=1

y2i −NT

)
.

(28)

Here M and T =
∑N

i=1 y
2
i /N are constants, and ξ is acting as thermal fluctuation.
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