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As I delve deeper in quantum computing, the more I feel like about learning how a quantum computer really
works. Introduced by Junyi Liu, I write this note based on his post and the Guide [2]. I start by briefly review some
basics of quantum harmonic oscillator and reproduce the simplest results for qubit control, i.e. the implementation of
single-qubit gates.

1 Quantum Harmonic Oscillator

1.1 The Position Operator and Momentum Operator

For a classical particle, we may interested in its position and momentum. For a quantum state Ψ(x, t), we can only
get the estimation from expectation. Note that it satisfies the Schrödinger equation, say

∂Ψ

∂t
=

ıℏ
2m

Ψxx − ı

ℏ
VΨ,

∂Ψ∗

∂t
= − ıℏ

2m
Ψ∗

xx +
ı

ℏ
Ψ∗V.

(1)

Following the reference [1], the expectation value of the position x is

⟨x⟩ =
∫ ∞

−∞
x|Ψ(x, t)|2dx =

∫ ∞

−∞
Ψ∗[x]Ψdx. (2)

To see how ⟨x⟩ changes,
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(3)

With the computation above, we conclude two operators x̂ and p̂, where

x̂Ψ(s, t) := sΨ(s, t),

p̂Ψ(x, t) := −ıℏ ∂

∂x
Ψ(x, t).

(4)

These two operators satisfy the canonical commutation relation, say

[x̂, p̂] = ıℏ, (5)

which is easy to verify.
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1.2 The Harmonic Oscillator

A perfect harmonic oscillator is a mass m attached to a spring of force constant k. The classical Hamiltonian is written
by

H =
p2

2m
+
kx2

2
. (6)

And the quantum version is

H =
p̂2

2m
+
kx̂2

2
=

p̂2

2m
+
m(ωx̂)2

2
, (7)

which corresponds to a Schrödinger equation

ı
∂

∂t
Ψ(x, t) = HΨ = − ℏ2

2m
∆Ψ+

mω2x2

2
Ψ, (8)

where ω =
√
k/m.

If H = p̂2

2m + m(ωx̂)2

2 is treated as a scalar, we have

H = ℏωaa† (9)

where a =
√

mω
2ℏ (x̂+ ı

mω p̂), a
† =

√
mω
2ℏ (x̂− ı

mω p̂). While in fact,

ℏωa†a =
mω2

2
(x̂2 − p̂2

m2ω2
+

ı

mω
[x̂, p̂]) = − p̂2

2m
+
mω2x̂2

2
− ωℏ

2
. (10)

So the correct expression is

H = ℏω(a†a+
1

2
). (11)

Without any proof, we claim that H as an infinite dimensional Hermitian operator, has eigenvalues ℏω(n+ 1
2 ) and

associated eigenstates |n⟩.

a |n⟩ =
√
n |n− 1⟩ , a† |n⟩ =

√
n+ 1 |n+ 1⟩ , (12)

1.3 From Quantum Harmonic Oscillator to the Transmon Qubit

Analogous to the spring model, let us start with the LC resonant circuit. The energy instead of oscillating between
the kinetic energy of the mass and the potential enerby of the spring, in the system, the energy oscillates between the
electrical energy (kinetic) in the capacitor C and magnetic energy (potential) in the inductor L.

Take the flux as the time integral of the voltage, say

Φ(t) =

∫ t

−∞
V (t′)dt′, (13)

the energy for the capacitor and the inductor can be represented as

TC =
1

2
CΦ2

t , UL =
1

2L
Φ2. (14)

Before conducting further computation, we need to introduce several identities:

Qt = I,Φt = V,Q = CV,Φ = LI. (15)

And the Hamiltonian of the system is defined as

H =
Q2

2C
+
C( 1√

LC
)2Φ2

2
=

1

2
CV 2 +

1

2
LI2. (16)

Compare the Equation 16 with Equation 7, we may take m = C, ω = 1√
LC

, and we are getting the exact same form.

To make it quantum mechanical, we can rewrite the H in terms of n := e2

2C and ϕ = 2π Φ
Φ0

, say

H = 4ECn
2 +

1

2
ELϕ

2, (17)
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where EC = e2

2C and EL =
Φ2

0

4π2L , but it does not affect the form

H = ℏω(a†a+
1

2
). (18)

Notice that for the system, the eigenvalues form a ladder where two adjacent energy levels differ ℏω. This is not
suitable for constructing a qubit since we only want to energy levels to serve as the |0⟩ and |1⟩. To introduce the
nonlinearity required to modify the harmonic potential, we use the Josephson junction, which makes the energy levels
no longer uniformly distribute. Replacing the linear inductor with a Josephson junction, the resulting Hamiltonian is

H = 4ECn
2 − EJ cos(ϕ) ≈ 4ECn

2 +
1

2
ELϕ

2 − 1

24
ELϕ

4, (19)

which is nonlinear in terms of ϕ.

2 Single-qubit Gate in Qubit Control

Besides the original Hamiltonian of the system, we may insert some other energy, which results in

H = ℏω(a†a+
1

2
) + ΩV (t)(a− a†) = HLC +Hd. (20)

Truncate all higher order terms, say

a ≈ |0⟩ ⟨1| =
[
0 1
0 0

]
, a† ≈ |1⟩ ⟨0| =

[
0 0
1 0

]
, (21)

so
H ≈ cI − ωq

2
Z + Vd(t)ΩY, (22)

where ωq = (E1 − E0)/ℏ.
Notice that the system will always rotating along the z-axis on the Bloch sphere, and we are interested in how the

system behaves like relative to that. For a initial state |ψ(0)⟩, its dynamics goes like

ı
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ . (23)

Define |ψrf (t)⟩ := eıHLCt |ψ(t)⟩, it satisfies

ı
∂

∂t
|ψrf (t)⟩ = −HLCe

ıHLCt |ψ(t)⟩+ eıHLCtH |ψ(t)⟩

= (−HLC + eıHLCtHe−ıHLCt) |ψrf (t)⟩ = eıHLCtHde
−ıHLCt |ψrf (t)⟩

= Vd(t)Ω

[
eıλ0t

eıλ1t

]
Y

[
e−ıλ0t

e−ıλ1t

]
= Vd(t)Ω

[
−ıeı(λ0−λ1)t

ıeı(λ1−λ0)t

]
= Vd(t)Ω(cos(δt)Y − sin(δt)X).

(24)

Here δ := λ1 − λ0 is the spectral gap. Consider Vd(t) = V0v(t) = V0s(t) sin(ωdt+ ϕ), the Hamiltonian in the rotating
frame becomes

V0Ωs(t)

[
sin(ωdt) cos(ϕ) + cos(ωdt) sin(ϕ)

][
cos(δt)Y − sin(δt)X

]
= −1

2
V0Ωs(t)(cos(ϕ)X + sin(ϕ)Y ),

(25)

provided with ωd = δ, and ωd+ δ is big enough so that the fast rotating terms that will average to zero (rotating wave
approximation). This indicates that we are able to rotate a qubit on the Bloch sphere.
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