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1 Periodic systems and Wannier functions

Firstly we establish the formulation of periodic systems following [LL19]. Consider some Hamiltonian

H = −1

2
∆ + U(r), (1)

where U(r) admits
U(r) = U(R+ r) (2)

for any R ∈ {R = n1a1 + n2a2 + n3a3 : n1, n2, n3 ∈ Z} =: L, and a1,a2,a3 are vectors in R3. The lattice
L is called the Bravais lattice. Ω := {R = c1a1 + c2a2 + c3a3 : −1/2 ≤ c1, c2, c3 < 1/2} is called a unit cell.

Consider the translation operator TR for some R ∈ L, it is clear that

[TR, H] = 0 (3)

thus they can be diagonalized in the same basis (and this holds true for any R ∈ L!), say {ψi}. Denote
the associated eigenvalues of TR as CR,i. Obviously, TR is a unitary operator in L2(R3), and CR,iCR′,i =
CR+R′,i, indicating

CR,i = eık·R. (4)

[Notice that i is used for indices and ı is the imaginary number.] Thus

ψi(r +R) = eık·Rψi(r). (5)

Now we replace the index i as a pair (n,k) and consider u(n,k)(r) := ψ(n,k)(r)/e
ık·r, one may immediately

find out that u(n,k)(r) admits a period as R, i.e. u(n,k)(r +R) = u(n,k)(r).
Now we are ready to define the reciprocal space. For

L∗ = {G = n1b1 + n2b2 + n3b3, n1, n2, n3 ∈ Z}, (6)

where
bα · aβ = 2πδα,β , (7)
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Because of the periodicity of u, it admits a Fourier expansion as

u(n,k)(r) =
∑
G∈L∗

cG+k,ne
ıG·r. (8)

Also, ψ(n,k)(r) = ψ(n,k+G)(r). So if we view ψ(n,k) as a function depending on k, it also leads to a
Fourier expansion:

ψ(n,k)(r) =
∑
R∈L

W(n,R)(r)e
ık·R. (9)

The coefficient functions W(n,R) are called Wannier functions.

Remark 1. There may be some constant in the definition of Wannier functions, depending on the definition
of Fourier transformation.

Now we turn to consider

Ω∗ := {n1b1 + n2b2 + n3b3,−1/2 ≤ c1, c2, c3 < 1/2}. (10)

Remark 2. One can show that for k1, k2 ∈ Ω∗,

⟨ψ(m,k1)|H|ψ(n,k2)⟩ = 0 (11)

if k1 ̸= k2, thus the Periodic Hamiltonian is block-diagonalized in terms of k.

The inverse Fourier transformation leads to a more formal definition of W(n,R), i.e.

W(n,R) =
1

|Ω∗|

∫
Ω∗
ψ(n,k)(r)e

−ık·Rdk. (12)

By definition, it is clear that W(n,R) admits

W(n,R)(r) =W(n,0)(r −R). (13)

Thus we can focus on makingW(n,0) localized around 0, which makes all Wannier functionsW(n,R) localized
around R. Notice that

W(n,0)(r) =
1

|Ω∗|

∫
Ω∗
ψ(n,k)(r)dk =

1

|Ω∗|

∫
Ω∗
u(n,k)(r)e

ık·rdk. (14)

This in turn requires that u(n,k)(r) is smooth in terms of k, thus ψ(n,k) is smooth in terms of k.

Remark 3. If one needs the Wannier function being real, the restriction ψ(n,k) = ψ†
(n,−k) can be imposed.

2 Super Cell Formulation and Brillouin Zone Sampling

We are interested in the thermodynamic limit (TDL) of the system. Two equivalent ways are provided, i.e.
the super cell formulation and the Brillouin zone sampling.

The super cell formulation can be considered as introducing N ℓ
1 × N ℓ

2 × N ℓ
3 unit cells along a1,a2 and

a3. Then the system can be treated as a giant molecule and then solved. An additional boundary condition
(Born-von Karman boundary condition) is enforced for the orbitals, say

ψ(r +N ℓ
αaα) = ψ(r). (15)

Now we restrict our attention (i.e. the integration) on this supercell, since the functions cannot be L2(R3)
due to the periodicity.

Recall that ψ(n,k) = eık·Ru(n,k)(r). The new boundary condition implies

eık·(N
ℓ
αaα) = 1, (16)
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meaning
k · aα = 2mπ/N ℓ

α, for m ∈ Z. (17)

Now reciprocal space Ω∗ is discretized. The possible k’s are now

Kℓ := {c1b1 + c2b2 + c3b3 | cα ∈ {−1/2,−1/2 + 1/N ℓ
α, · · · , 1/2− 1/N ℓ

α}}. (18)

One then could try to get the ground energy in terms of finding a set of periodic functions {un,k}, which is
an eigenvalue problem for separate k’s, according to Remark 2.

3 Linear Combination of Atomic Orbitals

Here we briefly discuss the framework of Linear Combination of Atomic Orbitals (LCAO). Consider a su-
percell Ls, for a given set of basis functions {µR} that is defined on a unit cell centered at R ∈ Ls ⊂ L (and
the µ here should also be considered as some index), apply Fourier transformation on {µR},

µk(r) =
∑
R

eık·RµR(r), (19)

and µk admits that µk(r + T ) = eık·Tµk(r) for T ∈ Ls. We may also consider its periodic extension {µ̃R}
where µ̃R :=

∑
L µR+L and L is the labels the Bravais lattice vectors of the supercell.

These orbitals {µk} are called Bloch AOs. Now we can try to construct ψ(n,k) as a linear combination
of {µk}, say

ψ(n,k) =
∑
µ

Cn,µµk. (20)

Then ψ(n,k) must admit the property defined in Equation 5.

Remark 4. The atomic orbitals {µR} are chosen to satisfy

µR(r −R) = µ0(r), (21)

meaning we choose the atomic orbitals for each unit-cell and then translate them throughout the supercell. It
is easy to see that the Wannier functions defined in Equation 14 satisfy this.

4 Boys Localization, Wannier Localization and the Pipek-Mezey
Metric

Suppose that we have already solved the Schrödinger equation and the orbitals are {ψi}, we are interested
in finding a unitary transformation U , which transform the orbitals into

ψ̃k =
∑
i

Ukiψi. (22)

Remark 5. Note that any unitary transformation could possibly break the lattice translational symmetry,
and the new functions are not the eigenstate of the periodic Hamiltonian anymore. However, the density
remains the same. Then what is the benefit of localization?

The goal of the transformation is to look for localization. A direct transformation one can choose is

ψ̃(n,k) = eıθ(n,k)ψ(n,k), (23)

where eıθ(n,k) is chosen to make sure ⟨ψ̃(m,k)|ψ̃(m,0)⟩ is real. This “increases” the smoothness of {ψ̃(n,k)}.
Another choice is to define a functional

Ω({ψ̃i}) :=
∑
i

[
⟨ψ̃i|r2|ψ̃i⟩ − ⟨ψ̃i|r|ψ̃i⟩2

]
(24)

and consider its minimization. This procedure is called the Boys localization. According to the discussion
before, this is equivalent to minimizing Ω({W(i,0)}).
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Remark 6. Here r2 := r · r and ⟨ψ̃i|r|ψ̃i⟩
2
:= ⟨ψ̃i|r|ψ̃i⟩ · ⟨ψ̃i|r|ψ̃i⟩.

Instead of considering the variance of the estimator r, another objective metric is proposed. Recall the
definition of {µ̃R}, we know that if {µR} is localized, {µ̃R} is localized, in the sense of at each unit cell.

First of all let us assume that {µ̃R} is an orthonormal set. The Pipek-Mezey (PM) metric is then defined
as

⟨O⟩PM =
∑
µ,i

(〈
W(i,0)(r)

∣∣ |µ̃R⟩ ⟨µ̃R|
∣∣W(i,0)(r)

〉)p
, (25)

here p = 2 or 4. The metric is not obvious at first glance, but we can discuss its property in a qulitative
way. Suppose W(i,0)(r) is localized around 0, and it is close to some µR, ⟨O⟩PM should be close to 1 for
each term. Otherwise, assume W(i,0) is uniformly spread out, each term will be small, thus the power p will
lead to a smaller value.

In practice, the basis {µ̃R} does not form a orthonormal basis, and the metric is revised as

⟨O⟩PM =
∑
µ,i

〈
W(i,0)(r)

∣∣∣∣∣∣ |µ̃R⟩
∑
ν,R′

(S−1)R,R′

µ,ν ⟨ν̃R′ |

∣∣∣∣∣∣W(i,0)(r)

〉p

. (26)

Here S is a matrix defined as
S = [⟨µ̃R|ν̃R′⟩]R,R′

µ,ν . (27)

An important property here is that∑
ν,R′

(S−1)R,R′

µ,ν ⟨ν̃R′ |

 |γ̃R′′⟩ =
∑
µ,R′

(S−1)R,R′

µ,ν (S)R
′,R′′

ν,γ = δR,R′′

µ,γ := δµ,γδR,R′′ . (28)

Even though the form has changed, the orbital∑
ν,R′

(S−1)R,R′

µ,ν ⟨ν̃R′ | (29)

serves as ⟨µ̃R| because of the property in Equation 28.

Remark 7. It is clear that the PM-metric highly depends on the choice of atomic orbitals. Generally, the
PM metric is ill-defined [LJ14].

5 Intrinsic Atomic Orbitals

Introduced in [Kni13], the Intrinsic Atomiz Orbitals (IAO) are introduced to better adjust the orbitals.
Consider two basis functions, namely B1 and B2, and we have solved the system of interest with B1, where
it leads to occupied orbitals |i⟩.

Define two projectors as

P12 =
∑

µ,ν∈B1

|µ⟩ (S−1)µ,ν ⟨ν| , P21 =
∑

ρ,σ∈B2

|ρ⟩ (S−1)ρ,σ ⟨σ| , (30)

we can obtain an orthonormal function set that sets in the space spanned by B2, i.e.

{|̃i⟩} = orth(P21P12 |i⟩), (31)

where orth represents an orthogonalization process. Another two projectors

O :=
∑
i

|i⟩ ⟨i| , Õ :=
∑
i

|̃i⟩ ⟨̃i| , (32)

and the IAOs are defined as
|ρIAO⟩ = [OÕ + (1−O)(1− Õ)] |ρ⟩ , (33)

where |ρ⟩ ∈ B2.
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Remark 8. An intuitive way of understanding the Equation 33 is that, an atomic orbital is projected into
two spaces: the first part is OÕ, occupied subspace both in B1 and B2; similarly, the second part represents
the virtual subspace generated by both B1 and B2.

As suggested in [ZT24], instead of directly adopting the atomic orbitals that are used to solve the periodic
system, one may construct a new basis by the IAO procedure, where B1 and B2 should be used to generate
Bloch AOs, as outlined in Section 3. As suggested by Remark 7, this could provide further advantage in
optimizing the PM metric thus solving the localization problem.

References

[Kni13] Gerald Knizia. “Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical
concepts”. In: Journal of chemical theory and computation 9.11 (2013), pp. 4834–4843.

[LJ14] Susi Lehtola and Hannes Jónsson. “Pipek–Mezey orbital localization using various partial charge
estimates”. In: Journal of chemical theory and computation 10.2 (2014), pp. 642–649.

[LL19] Lin Lin and Jianfeng Lu. A mathematical introduction to electronic structure theory. SIAM, 2019.

[ZT24] Andrew Zhu and David P Tew. “Wannier function localization using bloch intrinsic atomic or-
bitals”. In: The Journal of Physical Chemistry A 128.39 (2024), pp. 8570–8579.

5


	Periodic systems and Wannier functions
	Super Cell Formulation and Brillouin Zone Sampling
	Linear Combination of Atomic Orbitals
	Boys Localization, Wannier Localization and the Pipek-Mezey Metric
	Intrinsic Atomic Orbitals

